Efficient Self-Adaptive Learning Algorithm for TSK-Type Compensatory Neural Fuzzy Networks
نویسنده
چکیده
In this paper, a TSK-type compensatory neural fuzzy network (TCNFN) for classification applications is proposed. The TCNFN model is a five-layer structure, which combines the traditional Takagi-Sugeno-Kang (TSK). Layer 3 of the TCNFN model contains adaptive compensatory fuzzy operations, which make fuzzy logic systems more adaptive and effective. Furthermore, a self-adaptive learning algorithm, which consists of the structure learning and the parameter learning, is also proposed. The structure learning is based on the degree measure to determine the number of fuzzy rules and the parameter learning is based on the gradient descent algorithm to adjust the parameters of the TCNFN. The advantages of the proposed method are that it converges quickly and that the fuzzy rules that are obtained are more precise. The performance of TCNFN compares excellently with other various existing methods.
منابع مشابه
Adaptive Group Organization Cooperative Evolutionary Algorithm for TSK-type Neural Fuzzy Networks Design
This paper proposes a novel adaptive group organization cooperative evolutionary algorithm (AGOCEA) for TSK-type neural fuzzy networks design. The proposed AGOCEA uses group-based cooperative evolutionary algorithm and selforganizing technique to automatically design neural fuzzy networks. The group-based evolutionary divided populations to several groups and each group can evolve itself. In th...
متن کاملTemperature control using neuro-fuzzy controllers with compensatory operations and wavelet neural networks
This paper addresses a Compensatory Wavelet Neuro-Fuzzy System (CWNFS) for temperature control. The proposed CWNFS model is five-layer structure, which combines the traditional Takagi-Sugeno-Kang (TSK) fuzzy model and the wavelet neural networks (WNN). We adopt the non-orthogonal and compactly supported functions as wavelet neural network bases. Besides, the compensatory fuzzy reasoning method ...
متن کاملAdaptive Approximation-Based Control for Uncertain Nonlinear Systems With Unknown Dead-Zone Using Minimal Learning Parameter Algorithm
This paper proposes an adaptive approximation-based controller for uncertain strict-feedback nonlinear systems with unknown dead-zone nonlinearity. Dead-zone constraint is represented as a combination of a linear system with a disturbance-like term. This work invokes neural networks (NNs) as a linear-in-parameter approximator to model uncertain nonlinear functions that appear in virtual and act...
متن کاملINTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES
The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...
متن کاملCompensatory neurofuzzy systems with fast learning algorithms
In this paper, a new adaptive fuzzy reasoning method using compensatory fuzzy operators is proposed to make a fuzzy logic system more adaptive and more effective. Such a compensatory fuzzy logic system is proved to be a universal approximator. The compensatory neural fuzzy networks built by both control-oriented fuzzy neurons and decision-oriented fuzzy neurons cannot only adaptively adjust fuz...
متن کامل